521 research outputs found

    Application of Numerical Newton-Raphson Method in Calculation of Emitter Water Discharge of Drip Irrigation System in “Mutis Cemerlang” Coffee Plantation

    Get PDF
    Based on the slope class, the shape of the area and the elevation of dry land in Nusa Tenggara, agricultural land in Noepesu Village is suitable for planting coffee plants with an agroforestry scheme. To overcome the problem of limited water, drip irrigation system technology can be applied. The use of drip irrigation as an agricultural technology in Noepesu village has been carried out by many farmer groups. Still, the installation process does not consider the pipe specifications (pipe length and pipe diameter) and the condition of agricultural land. This causes the service life of drip irrigation to be not long. If this continues, of course, it will increase system installation costs. To optimize service life, a hydraulics analysis method is needed for drip irrigation pipe network systems that take into account pipe specifications and agricultural land conditions.The hydraulics analysis of the drip irrigation network system determines the emitter’s water flow rate. The emitter flow rate forms a nonlinear equation known as the closed pipe equation. In the process of solving these equations, numerical methods can be used, specifically the Newton-Raphson method. This study focuses on applying the Newton-Raphson method to calculate the amount of water discharge from each emitter of the drip irrigation network system on the farmland of the Mutis Cemerlang Farmer Group in Noepesu Village. The drip irrigation system is designed with 250 nodes, 275 pipes, 26 loops, and 86 outlets divided into two sides, with the left side containing 84 outlets with one emitter and the right side containing 102 outlets with two emitters. The amount of water discharge for each emitter is 0,0008 ml/second≤Q≤2,6 ml/second for the left side and 0,001 ml/second≤Q≤1,1 ml/second for the right side, as determined by simulation calculations utilizing the Newton-Raphson method and Matlab software. The simulation results show that the amount of water discharge at each emitter is ideal in the first iteration because it has a discharge correction value (∆Q)≈0

    Human Sclera Maintains Common Characteristics with Cartilage throughout Evolution

    Get PDF
    BACKGROUND: The sclera maintains and protects the eye ball, which receives visual inputs. Although the sclera does not contribute significantly to visual perception, scleral diseases such as refractory scleritis, scleral perforation and pathological myopia are considered incurable or difficult to cure. The aim of this study is to identify characteristics of the human sclera as one of the connective tissues derived from the neural crest and mesoderm. METHODOLOGY/PRINCIPAL FINDINGS: We have demonstrated microarray data of cultured human infant scleral cells. Hierarchical clustering was performed to group scleral cells and other mesenchymal cells into subcategories. Hierarchical clustering analysis showed similarity between scleral cells and auricular cartilage-derived cells. Cultured micromasses of scleral cells exposed to TGF-betas and BMP2 produced an abundant matrix. The expression of cartilage-associated genes, such as Indian hedge hog, type X collagen, and MMP13, was up-regulated within 3 weeks in vitro. These results suggest that human 'sclera'-derived cells can be considered chondrocytes when cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our present study shows a chondrogenic potential of human sclera. Interestingly, the sclera of certain vertebrates, such as birds and fish, is composed of hyaline cartilage. Although the human sclera is not a cartilaginous tissue, the human sclera maintains chondrogenic potential throughout evolution. In addition, our findings directly explain an enigma that the sclera and the joint cartilage are common targets of inflammatory cells in rheumatic arthritis. The present global gene expression database will contribute to the clarification of the pathogenesis of developmental diseases such as high myopia

    Natural selection increases female fitness by reversing the exaggeration of a male sexually selected trait

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: The data that support the findings of this study are provided in Supplementary Data 1. This includes population mean trait values during and on completion of experimental evolution, fighting data, predation-mandible size data and the pedigree data. Source data are provided with this paper.Theory shows how sexual selection can exaggerate male traits beyond naturally selected optima and also how natural selection can ultimately halt trait elaboration. Empirical evidence supports this theory, but to our knowledge, there have been no experimental evolution studies directly testing this logic, and little examination of possible associated effects on female fitness. Here we use experimental evolution of replicate populations of broad-horned flour beetles to test for effects of sex-specific predation on an exaggerated sexually selected male trait (the mandibles), while also testing for effects on female lifetime reproductive success. We find that populations subjected to male-specific predation evolve smaller sexually selected mandibles and this indirectly increases female fitness, seemingly through intersexual genetic correlations we document. Predation solely on females has no effects. Our findings support fundamental theory, but also reveal unforseen outcomes—the indirect effect on females—when natural selection targets sex-limited sexually selected characters.Leverhulme TrustJapan Society for the Promotion of Scienc

    Involvement of RhoA-mediated Ca(2+ )sensitization in antigen-induced bronchial smooth muscle hyperresponsiveness in mice

    Get PDF
    BACKGROUND: It has recently been suggested that RhoA plays an important role in the enhancement of the Ca(2+ )sensitization of smooth muscle contraction. In the present study, a participation of RhoA-mediated Ca(2+ )sensitization in the augmented bronchial smooth muscle (BSM) contraction in a murine model of allergic asthma was examined. METHODS: Ovalbumin (OA)-sensitized BALB/c mice were repeatedly challenged with aerosolized OA and sacrificed 24 hours after the last antigen challenge. The contractility and RhoA protein expression of BSMs were measured by organ-bath technique and immunoblotting, respectively. RESULTS: Repeated OA challenge to sensitized mice caused a BSM hyperresponsiveness to acetylcholine (ACh), but not to high K(+)-depolarization. In α-toxin-permeabilized BSMs, ACh induced a Ca(2+ )sensitization of contraction, which is sensitive to Clostridium botulinum C3 exoenzyme, indicating that RhoA is implicated in this Ca(2+ )sensitization. Interestingly, the ACh-induced, RhoA-mediated Ca(2+ )sensitization was significantly augmented in permeabilized BSMs of OA-challenged mice. Moreover, protein expression of RhoA was significantly increased in the hyperresponsive BSMs. CONCLUSION: These findings suggest that the augmentation of Ca(2+ )sensitizing effect, probably via an up-regulation of RhoA protein, might be involved in the enhanced BSM contraction in antigen-induced airway hyperresponsiveness

    Big-Data-Driven Materials Science and its FAIR Data Infrastructure

    Get PDF
    This chapter addresses the forth paradigm of materials research -- big-data driven materials science. Its concepts and state-of-the-art are described, and its challenges and chances are discussed. For furthering the field, Open Data and an all-embracing sharing, an efficient data infrastructure, and the rich ecosystem of computer codes used in the community are of critical importance. For shaping this forth paradigm and contributing to the development or discovery of improved and novel materials, data must be what is now called FAIR -- Findable, Accessible, Interoperable and Re-purposable/Re-usable. This sets the stage for advances of methods from artificial intelligence that operate on large data sets to find trends and patterns that cannot be obtained from individual calculations and not even directly from high-throughput studies. Recent progress is reviewed and demonstrated, and the chapter is concluded by a forward-looking perspective, addressing important not yet solved challenges.Comment: submitted to the Handbook of Materials Modeling (eds. S. Yip and W. Andreoni), Springer 2018/201

    Sodium Selenide Toxicity Is Mediated by O2-Dependent DNA Breaks

    Get PDF
    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H2Se/HSe−/Se2−). Among the genes whose deletion caused hypresensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The •OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O2-dependent radical-based mechanism

    Direct Gene Transfer with IP-10 Mutant Ameliorates Mouse CVB3-Induced Myocarditis by Blunting Th1 Immune Responses

    Get PDF
    Background: Myocarditis is an inflammation of the myocardium that often follows the enterovirus infections, with coxsackievirus B3 (CVB3) being the most dominant etiologic agent. We and other groups previously reported that chemokine IP-10 was significantly induced in the heart tissue of CVB3-infected mice and contributed to the migration of massive inflammatory cells into the myocardium, which represents one of the most important mechanisms of viral myocarditis. To evaluate the direct effect of IP-10 on the inflammatory responses in CVB3 myocarditis, herein an IP-10 mutant deprived of chemo-attractant function was introduced into mice to antagonize the endogenous IP-10 activity, and its therapeutic effect on CVB3-induced myocarditis was evaluated. Methodology/Principal Findings: The depletion mutant pIP-10-AT, with an additional methionine after removal of the 5 N-terminal amino acids, was genetically constructed and intramuscularly injected into BALB/c mice after CVB3 infection. Compared with vector or no treatment, pIP-10-AT treatment had significantly reduced heart/body weight ratio and serum CK-MB level, increased survival rate and improved heart histopathology, suggesting an ameliorated myocarditis. This therapeutic effect was not attributable to an enhanced viral clearance, but to a blunted Th1 immune response, as evidenced by significantly decreased splenic CD4 + /CD8 + IFN-c + T cell percentages and reduced myocardial Th1 cytokine levels. Conclusion/Significance: Our findings constitute the first preclinical data indicating that interfering in vivo IP-10 activit

    Defining Developmental Potency and Cell Lineage Trajectories by Expression Profiling of Differentiating Mouse Embryonic Stem Cells

    Get PDF
    Biologists rely on morphology, function and specific markers to define the differentiation status of cells. Transcript profiling has expanded the repertoire of these markers by providing the snapshot of cellular status that reflects the activity of all genes. However, such data have been used only to assess relative similarities and differences of these cells. Here we show that principal component analysis of global gene expression profiles map cells in multidimensional transcript profile space and the positions of differentiating cells progress in a stepwise manner along trajectories starting from undifferentiated embryonic stem (ES) cells located in the apex. We present three ‘cell lineage trajectories’, which represent the differentiation of ES cells into the first three lineages in mammalian development: primitive endoderm, trophoblast and primitive ectoderm/neural ectoderm. The positions of the cells along these trajectories seem to reflect the developmental potency of cells and can be used as a scale for the potential of cells. Indeed, we show that embryonic germ cells and induced pluripotent cells are mapped near the origin of the trajectories, whereas mouse embryo fibroblast and fibroblast cell lines are mapped near the far end of the trajectories. We suggest that this method can be used as the non-operational semi-quantitative definition of cell differentiation status and developmental potency. Furthermore, the global expression profiles of cell lineages provide a framework for the future study of in vitro and in vivo cell differentiation
    corecore